Fraenkel Asymmetry

نویسنده

  • Steven Finch
چکیده

For simplicity, we restrict attention to subregions of the plane. Let Ω ⊆ R 2 be the closure of a bounded, open, connected set of area |Ω| with piecewise continuously differentiable boundary and perimeter . The classical isoperimetric inequality:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Strong Form of the Quantitative Isoperimetric Inequality

We give a refinement of the quantitative isoperimetric inequality. We prove that the isoperimetric gap controls not only the Fraenkel asymmetry but also the oscillation of the boundary.

متن کامل

A Sharp Quantitative Isoperimetric Inequality in Higher Codimension

We establish a quantitative isoperimetric inequality in higher codimension. In particular, we prove that for any closed (n − 1)-dimensional manifold Γ in Rn+k the following inequality D(Γ) ≥ Cd(Γ) holds true. Here, D(Γ) stands for the isoperimetric gap of Γ, i.e. the deviation in measure of Γ from being a round sphere and d(Γ) denotes a natural generalization of the Fraenkel asymmetry index of ...

متن کامل

A Strong Form of the Quantitative Wulff Inequality

Quantitative isoperimetric inequalities are shown for anisotropic surface energies where the isoperimetric deficit controls both the Fraenkel asymmetry and a measure of the oscillation of the boundary with respect to the boundary of the corresponding Wulff shape.

متن کامل

On the quantitative isoperimetric inequality in the plane

In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set Ω, different from a ball, which minimizes the ratio δ(Ω)/λ(Ω), where δ is the isoperimetric deficit and λ the Fraenkel asymmetry, giving a new proof of the quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.

متن کامل

The disjunction and related properties for constructive Zermelo-Fraenkel set theory

This paper proves that the disjunction property, the numerical existence property, Church’s rule, and several other metamathematical properties hold true for Constructive Zermelo-Fraenkel Set Theory, CZF, and also for the theory CZF augmented by the Regular Extension Axiom. As regards the proof technique, it features a self-validating semantics for CZF that combines realizability for extensiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014